Sharp reversed Hardy–Littlewood–Sobolev inequality with extension kernel

نویسندگان

چکیده

In this paper, we prove the following reversed Hardy–Littlewood–Sobolev inequality with extension kernel: $$\int _{\mathbb R_+^n}\int _{\partial\mathbb R^n_+}\frac{x_n^\beta}{|x-y|^{n-\alpha}}f(y)g(x)\,dy\,dx\geq C_{n,\alpha ,\beta ,p}\|f\|_{L^{p}(\partia

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sharp concentration inequality with applications

We present a new general concentration-of-measure inequality and illustrate its power by applications in random combinatorics. The results nd direct applications in some problems of learning theory. The work of the second author was supported by DGES grant PB96-0300

متن کامل

Pitt’s Inequality with Sharp Convolution Estimates

WILLIAM BECKNER Abstract. Sharp Lp extensions of Pitt’s inequality expressed as a weighted Sobolev inequality are obtained using convolution estimates and Stein-Weiss potentials. Optimal constants are obtained for the full Stein-Weiss potential as a map from Lp to itself which in turn yield semi-classical Rellich inequalities on Rn. Additional results are obtained for Stein-Weiss potentials wit...

متن کامل

Double Logarithmic Inequality with a Sharp Constant

We prove a Log Log inequality with a sharp constant. We also show that the constant in the Log estimate is “almost” sharp. These estimates are applied to prove a Moser-Trudinger type inequality for solutions of a 2D wave equation.

متن کامل

Double Logarithmic Inequality with a Sharp Constant

We prove a Log Log inequality with a sharp constant. We also show that the constant in the Log estimate is “almost” sharp. These estimates are applied to prove a Moser-Trudinger type inequality for solutions of a 2D wave equation.

متن کامل

A New Reversed Version of a Generalized Sharp Hölder’s Inequality and Its Applications

and Applied Analysis 3 Theorem 4. Let r ≥ 0,Br > 0 (r = 1, 2, . . . , n), let 1 − r + s ≥ 0 (r, s = 1, 2, . . . , n), and let q < 0, p > 0, ρ = max{1/p + 1/q, 1}. Then, n ∑ r=1 rr ≥ n 1−ρ ( n ∑ r=1 A p r ) 1/p−1/q × {[( n ∑ r=1 A p r )( n ∑ r=1 B q r )] 2 − [( n ∑ r=1 A p r r n ∑ r=1 B q r ) − ( n ∑ r=1 A p r )( n ∑ r=1 B q r r 2

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2023

ISSN: ['0039-3223', '1730-6337']

DOI: https://doi.org/10.4064/sm220323-26-1